AUTOXIDATION OF ANDROSTENONES

A. C. Campbell, J. McLean and W. Lawrie

Department of Pure and Applied Chemistry

The University of Strathclyde, Glasgow, C.1.

(Received in UK 26 October 1968; accépted for publication 6 January 1969)

Recently we had occasion to prepare 5α -androst-15-en-17-one (T) by hydrolysis of the 17-ethylene ketal (II)¹ with p-toluenesulphonic acid in aqueous acetone at 25° (5 hr.). Concentration <u>in vacuo</u> followed by extraction with ether and crystallisation from hexane gave the androstenone (I)¹ (50%). The hexane mother liquor on standing for three days deposited material (20%) which failed to redissolve in hexane but crystallised from methanol to give 14β-hydroperoxy-5α-androst-15-en-17-one (III) as plates, m.p. 183-186° (d.), $[\alpha]_D + 62°$ (<u>c</u>,0.69, MeOH), λ_{max} . 216 mµ (ϵ 6,700); \checkmark_{max} . 3220 (-0.0H), 1691 (C=C-C=O) and 1582 cm.⁻¹ (C=C). The n.m.r. spectrum in D.M.S.O. showed a singlet (1H) at 7 -0.68 (-0-OH),² 2.58 (d,1H; J = 6.5 Hz -C-16H), 3.67 (d,1H; J = 6.5 Hz. -C-15H) (Found: M⁺304.2037. C_{1.9}H₂₆O₃ requires M⁺304.2038).

When the hydroperoxide (III) is treated with potassium iodide in acetic acid and left aside for 1 hr. it is converted quantitatively to 14β -hydroxy- 5α -androst-15-en-17-one (IV), (from methanol), m.p. 190-191°, $[\alpha]_D + 149°$ (\underline{c} ,0.7, CHCl₃), λ_{max} .²¹³ mµ (ϵ 4,400); \bigvee_{max} .(KBr) 3445 (OH), 1700 cm.⁻¹ (cyclopentenone). The n.m.r. peak at Υ -0.68 was absent. (Found: M⁺288.2092. C₁₉H₂₀O₂ requires M⁺288.2089). The assignment of the 14 β configuration to the hydroxyl group in compound (IV) was in keeping with its optical rotatory dispersion which showed a positive Cotton effect curve characteristic of 14 β -substituted androst-15-en-17-ones.³

When the Δ^{15} -androstenone (I) was heated under reflux in benzene (15 min.) with p-toluenesulphonic acid in a nitrogen atmosphere and the product chromatographed on neutral alumina, light petroleum (40-60°) eluted

483

5*a*-androst-14-en-17-one (V), (from hexane), m.p. 56-57°, $[\alpha]_{\rm D}$ + 142° (<u>c</u>,1.3); $\lambda_{\rm max.}^{\rm Hexane}$ 214 mµ (*e* 1,600); $\sqrt[4]{}_{\rm max.}$ (KBr) 1738 (non-conjugated cyclopentenone) and 1640 cm.⁻¹ (C=C). N.m.r. absorptions (CDC1₃) at 7 4.47 (m, 1H; C-15H coupled to C-16 methylene), 7.08 (m, 2H; C-16 methylene). (Found: M⁺272.2140. C₁₉H₂₀O requires M⁺272.2140). Continued elution with light petroleum (60-80°) afforded 5*a*,14β-androst-15-en-17-one (VI), m.p. 64-65°, $[\alpha]_{\rm D}$ + 253° (<u>c</u>,0.81); $\lambda_{\rm max.}^{\rm Hexane}$ 226 mµ (*e* 6,400); $\sqrt[4]{}_{\rm max.}$ (KBr) 1698 (cyclopentenone) and 1586 cm.⁻¹ (C=C). (Found: M⁺272.2143. C₁₉H₂₀O requires M⁺272.2140),

Intermediate eluates obtained in the chromatographic separation of the ketones (V and VI) - and which contained only these ketones as shown by t.l.c. - were allowed to stand in air for 14 days. Titration of a portion of the residue with standard thiosulphate indicated that 90% conversion to hydroperoxide had occurred while recrystallisation of the residue from methanol afforded only the hydroperoxide (III) thereby illustrating the ready susceptibility of ring D unsaturated androsten-17ones to autoxidation.

All new compounds described gave satisfactory elemental analysis.

References

¹C. Djerassi, G. von Mutzenbecker, J. Fajkos, D. H. Williams and H. Budzikiewicz, <u>J. Am. Chem. Soc</u>. <u>87</u>, 817 (1965).
²E. Shapiro, L. Finckenor and H. L. Herzog, <u>J. Org. Chem.</u> <u>33</u>, 1673 (1968).
³F. Sondheimer, S. Burstein and R. Mechoulam, <u>J. Am. Chem. Soc</u>. <u>82</u>, 3209 (1960).